

OFFICE OF NAVAL RESEARCH

Grant N00014-92-J1052

R&T Code 4135018

SELECTE JUN 0 8 1993

Technical Report #7

"The Nonnatural Deoxyribonucleoside D₃ Incorporated in an Intramolecular DNA Triplex Binds Sequence Specifically by Intercalation"

by K. M. Koshlap, P. Gillespie, P. B. Dervan, and J. Feigon

California Institute of Technology
Division of Chemistry and Chemical Engineering
Pasadena, CA

June 1, 1993

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

93 6 07 05 6

93-12708

The Nonnatural Deoxyribonucleoside D₃ Incorporated in an Intramolecular DNA Triplex Binds Sequence Specifically by Intercalation

Karl M. Koshlap#, Paul Gillespie§, Peter B. Dervan§*, and Juli Feigon#*

Abstract: The synthetic deoxyribonucleoside 1-(2-deoxy-β-D-ribofuranosyl)-4-(3-benzamido)phenylimidazole (D₃) has been shown to specifically recognize both T·A and C·G base pairs when incorporated into the Hoogsteen paired strand of pyrimidine purine-pyrimidine triplexes. To further investigate the binding of D₃, a DNA oligonucleotide containing a single D₃ residue and designed to form intramolecular triplexes was synthesized and studied by one- and two-dimensional NMR spectroscopy. The oligonucleotide d(AGATAGAACCCCTTCTATCTTATATCTD₃TCTT) was found to form a stable intramolecular triplex, with a CCCC and a TATA loop connecting the Watson-Crick and Hoogsteen paired strands, respectively. Unlike other third strand bases, however, D₃ does not hydrogen bond with a Watson-Crick base pair. Instead, it intercalates between its associated base pair (T·A) and the adjacent 3' T·A·T triplet. The binding mode of D₃ is unique in that it not only binds by intercalation but skips a potential base pair to do so. Thus, non-purine bases can be accommodated in the purine strand of DNA triplexes in an entirely new way.

^{*}Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, CA 90024

[§]Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

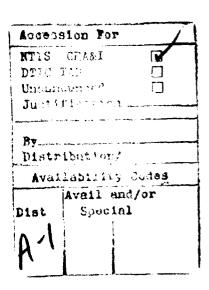

^{*}Authors to whom inquiries should be directed.

Figure Captions

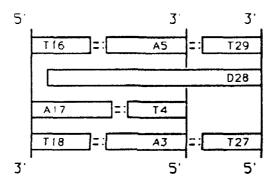

Figure 1. (A) Chemical structure of the nonnatural deoxyribonucleoside D₃ with ring labeling and numbering scheme used. **R** is deoxyribose. (B) Schematic of the proposed folding of the 31 base intramolecular triplex with base numbering scheme used. Hydrogen bonds are indicated by (·) except for those of protonated C, indicated by (+).

Figure 2. Schematic illustrating the binding mode of D₃ and neighboring nucleotides.

DTIC QUALITY INSPECTED 2

T T20 C19 T18 A17 T16 C15 T14 T13 C

